Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Phytomedicine ; 104: 154324, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2000662

ABSTRACT

BACKGROUND: COVID-19 highly caused contagious infections and massive deaths worldwide as well as unprecedentedly disrupting global economies and societies, and the urgent development of new antiviral medications are required. Medicinal herbs are promising resources for the discovery of prophylactic candidate against COVID-19. Considerable amounts of experimental efforts have been made on vaccines and direct-acting antiviral agents (DAAs), but neither of them was fast and fully developed. PURPOSE: This study examined the computational approaches that have played a significant role in drug discovery and development against COVID-19, and these computational methods and tools will be helpful for the discovery of lead compounds from phytochemicals and understanding the molecular mechanism of action of TCM in the prevention and control of the other diseases. METHODS: A search conducting in scientific databases (PubMed, Science Direct, ResearchGate, Google Scholar, and Web of Science) found a total of 2172 articles, which were retrieved via web interface of the following websites. After applying some inclusion and exclusion criteria and full-text screening, only 292 articles were collected as eligible articles. RESULTS: In this review, we highlight three main categories of computational approaches including structure-based, knowledge-mining (artificial intelligence) and network-based approaches. The most commonly used database, molecular docking tool, and MD simulation software include TCMSP, AutoDock Vina, and GROMACS, respectively. Network-based approaches were mainly provided to help readers understanding the complex mechanisms of multiple TCM ingredients, targets, diseases, and networks. CONCLUSION: Computational approaches have been broadly applied to the research of phytochemicals and TCM against COVID-19, and played a significant role in drug discovery and development in terms of the financial and time saving.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Hepatitis C, Chronic , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Artificial Intelligence , China , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Hepatitis C, Chronic/drug therapy , Humans , Medicine, Chinese Traditional , Molecular Docking Simulation , Phytochemicals/pharmacology
2.
Mol Ther ; 29(2): 873-885, 2021 02 03.
Article in English | MEDLINE | ID: covidwho-1065674

ABSTRACT

Antiviral drug development for coronavirus disease 2019 (COVID-19) is occurring at an unprecedented pace, yet there are still limited therapeutic options for treating this disease. We hypothesized that combining drugs with independent mechanisms of action could result in synergy against SARS-CoV-2, thus generating better antiviral efficacy. Using in silico approaches, we prioritized 73 combinations of 32 drugs with potential activity against SARS-CoV-2 and then tested them in vitro. Sixteen synergistic and eight antagonistic combinations were identified; among 16 synergistic cases, combinations of the US Food and Drug Administration (FDA)-approved drug nitazoxanide with remdesivir, amodiaquine, or umifenovir were most notable, all exhibiting significant synergy against SARS-CoV-2 in a cell model. However, the combination of remdesivir and lysosomotropic drugs, such as hydroxychloroquine, demonstrated strong antagonism. Overall, these results highlight the utility of drug repurposing and preclinical testing of drug combinations for discovering potential therapies to treat COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Drug Combinations , Drug Synergism , Humans , Hydroxychloroquine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL